题目内容
点P在椭圆上,椭圆的左准线为直线l,左焦点为F,作PQ⊥l于点Q,若P、F、Q三点构成一个等腰直角三角形,则该椭圆的离心率为
【解析】
故离心率为
设椭圆中心在原点,两焦点F1,F2在x轴上,点P在椭圆上.若椭圆的离心率为,△PF1F2的周长为12,则椭圆的标准方程是
A.+=1 B.+=1 C.+=1 D.+=1
如图,点P在椭圆上,F1、F2分别
是椭圆的左、右焦点,过点P作椭圆右准线的垂线,垂足为M,
若四边形为菱形,则椭圆的离心率是
如图,点P在椭圆上,F1、F2分别是椭圆的左、右焦点,过点P作椭圆右准线的垂线,垂足为M,若四边形为菱形,则椭圆的离心率是 .