题目内容

已知椭圆的中心在坐标原点,焦点在轴上且过点,离心率是

1)求椭圆的标准方程;

2)直线过点且与椭圆交于两点,若,求直线的方程.

 

1;(2

【解析】

试题分析:(1)由题设条件知关于a,b,c的方程组,由此能求出椭圆方程. 

2)可以设直线方程(斜率不存在单独考虑),然后与椭圆方程联立,消去y得到关于x的一元二次方程,利用韦达定理结合题目条件建立方程即可求出直线方程.

试题解析:(1)设椭圆的方程为.

由已知可得 3

解得.

故椭圆的方程为6

2)由已知,若直线的斜率不存在,则过点的直线的方程为

此时,显然不成立. 7

若直线的斜率存在,则设直线的方程为

整理得9

,① . ② 10

因为,即.③

①②③联立解得 13

所以直线的方程为14

考点:(1)椭圆标准方程;(2)直线与圆锥曲线的位置关系.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网