题目内容
【题目】某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取
人,答题成绩统计如图所示.
![]()
(1)由直方图可认为答题者的成绩
服从正态分布
,其中
,
分别为答题者的平均成绩
和成绩的方差
,那么这
名答题者成绩超过
分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)
(2)如果成绩超过
分的民众我们认为是“防御知识合格者”,用这
名答题者的成绩来估计全市的民众,现从全市中随机抽取
人,“防御知识合格者”的人数为
,求
.(精确到
)
附:①
,
;②
,则
,
;③
,
.
【答案】(1)1587人;(2)
.
【解析】
(1)根据加权平均数公式计算
,根据正态分布的对称性计算
,再估计人数;
(2)根据二项分布的概率公式计算
.
(1)由题意知:
,
依题意
服从正态分布
,其中
,
,
,
服从正态分布
,
而
,
![]()
.
成绩超过84.8的人数估计为
人.
(2)成绩超过
分的概率为
.
由题知
,
![]()
.
【题目】为考察某种药物预防疾病的效果,进行动物试验,调查了 105 个样本,统计结果为:服药的共有 55 个样本,服药但患病的仍有 10 个样本,没有服药且未患病的有 30个样本.
(1)根据所给样本数据完成
列联表中的数据;
(2)请问能有多大把握认为药物有效?
(参考公式:
独立性检验临界值表
概率 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
患病 | 不患病 | 合计 | |
服药 | |||
没服药 | |||
合计 |
【题目】为了调查某校高二学生的身高是否与性别有关,随机调查该校64名高二学生,得到2×2列联表如表:
男生 | 女生 | 总计 | |
身高低于170cm | 8 | 24 | 32 |
身高不低于170cm | 26 | 6 | 32 |
总计 | 34 | 30 | 64 |
附:K2![]()
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由此得出的正确结论是( )
A.在犯错误的概率不超过0.01的前提下,认为“身高与性别无关”
B.在犯错误的概率不超过0.01的前提下,认为“身高与性别有关”
C.有99.9%的把握认为“身高与性别无关”
D.有99.9%的把握认为“身高与性别有关”