题目内容

已知正项数列{an}满足a1=P(0<P<1),且an+1=
an
1+an
n∈N*
(1)若bn=
1
an
,求证:数列{bn}为等差数列;
(2)求证:
a1
2
+
a2
3
+
a3
4
+…+
an
n+1
<1
分析:(1)由已知,得bn+1-bn=1∴数列{bn}为等差数列;
(2)由(1)求出an=
1
n+
1
p
-1
1
n
,再对
an
 n+1
放缩,使得能求和运算,并将结果与1比较.
解答:解:(1)b1=
1
a1
=
1
P

bn+1-bn=
1
an+1
-
1
an
=
1+an
an
-
1
an
=1& 

故数列{bn}是以b1=
1
P
为首项,以1为等差的等差数列              
(2)证明:bn=
1
an
=
1
p
+(n-1)⇒an=
1
n+
1
p
-1

0<p<1
 ∴
1
p
-1>0
an=
1
n+
1
p
-1
1
n

a1
2
+
a2
3
+
a3
4
+…+
an
n+1
1
2×1
+
1
3×2
+
1
4×3
+…+
1
(n+1)n

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=1-
1
n+1
<1
点评:本题考查等差数列的定义、通项公式、裂项法求和、不等式的证明.变形构造转化.考查变形转化构造、放缩、计算等能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网