题目内容
已知正项数列{an}满足a1=P(0<P<1),且an+1=| an |
| 1+an |
(1)若bn=
| 1 |
| an |
(2)求证:
| a1 |
| 2 |
| a2 |
| 3 |
| a3 |
| 4 |
| an |
| n+1 |
分析:(1)由已知,得bn+1-bn=1∴数列{bn}为等差数列;
(2)由(1)求出an=
<
,再对
放缩,使得能求和运算,并将结果与1比较.
(2)由(1)求出an=
| 1 | ||
n+
|
| 1 |
| n |
| an |
| n+1 |
解答:解:(1)b1=
=
∴bn+1-bn=
故数列{bn}是以b1=
为首项,以1为等差的等差数列
(2)证明:bn=
=
+(n-1)⇒an=
∵0<p<1
⇒an=
<
+
+
+…+
<
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
<1
| 1 |
| a1 |
| 1 |
| P |
∴bn+1-bn=
|
故数列{bn}是以b1=
| 1 |
| P |
(2)证明:bn=
| 1 |
| an |
| 1 |
| p |
| 1 | ||
n+
|
∵0<p<1
|
| 1 | ||
n+
|
| 1 |
| n |
| a1 |
| 2 |
| a2 |
| 3 |
| a3 |
| 4 |
| an |
| n+1 |
| 1 |
| 2×1 |
| 1 |
| 3×2 |
| 1 |
| 4×3 |
| 1 |
| (n+1)n |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
点评:本题考查等差数列的定义、通项公式、裂项法求和、不等式的证明.变形构造转化.考查变形转化构造、放缩、计算等能力.
练习册系列答案
相关题目