题目内容
已知函数f(x)=
sin(2x+ϕ),若f(a)=
,则f(a+
)与f(a+
)的大小关系是( )
3 |
3 |
5π |
6 |
π |
12 |
A.f(a+
| B.f(a+
| ||||||||
C.f(a+
| D.大小与a、ϕ有关 |
由f(x)=
sin(2x+ϕ),且f(a)=
,得
f(a)=
sin(2a+φ)=
,
∴sin(2a+φ)=1,cos(2a+φ)=0.
由f(a+
)-f(a+
)
=
sin[2(a+
)+φ]-
sin[2(a+
)+φ]
=
sin[(2a+φ)+
]-
sin[(2a+φ)+
].
=
sin(2a+φ)cos
+
cos(2a+φ)sin
-
sin(2a+φ)cos
-
cos(2a+φ)sin
=
cos
-
cos
=
-
<0.
∴f(a+
)<f(a+
).
故选:B.
3 |
3 |
f(a)=
3 |
3 |
∴sin(2a+φ)=1,cos(2a+φ)=0.
由f(a+
5π |
6 |
π |
12 |
=
3 |
5π |
6 |
3 |
π |
12 |
=
3 |
5π |
3 |
3 |
π |
6 |
=
3 |
5π |
3 |
3 |
5π |
3 |
3 |
π |
6 |
3 |
π |
6 |
=
3 |
5π |
3 |
3 |
π |
6 |
=
| ||
2 |
3 |
2 |
∴f(a+
5π |
6 |
π |
12 |
故选:B.
练习册系列答案
相关题目