题目内容

已知函数f(x)=
3
sin(2x+ϕ)
,若f(a)=
3
,则f(a+
6
)
f(a+
π
12
)
的大小关系是(  )
A.f(a+
6
)
f(a+
π
12
)
B.f(a+
6
)
f(a+
π
12
)
C.f(a+
6
)
=f(a+
π
12
)
D.大小与a、ϕ有关
f(x)=
3
sin(2x+ϕ)
,且f(a)=
3
,得
f(a)=
3
sin(2a+φ)=
3

∴sin(2a+φ)=1,cos(2a+φ)=0.
f(a+
6
)
-f(a+
π
12
)

=
3
sin[2(a+
6
)+φ]-
3
sin[2(a+
π
12
)+φ]

=
3
sin[(2a+φ)+
3
]-
3
sin[(2a+φ)+
π
6
]

=
3
sin(2a+φ)cos
3
+
3
cos(2a+φ)sin
3
-
3
sin(2a+φ)cos
π
6
-
3
cos(2a+φ)sin
π
6

=
3
cos
3
-
3
cos
π
6

=
3
2
-
3
2
<0.
f(a+
6
)
f(a+
π
12
)

故选:B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网