题目内容
【题目】某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算均值;
(2)试从两位考生正确完成题数的均值及至少正确完成2题的概率分析比较两位考生的实验操作能力.
【答案】(1); (2)可以判断甲的实验操作能力较强..
【解析】
(1)设考生甲、乙正确完成实验操作的题数分别为ξ,η,得出随机变量ξ,η的分布列,利用即可求解数学期望;
(2)由(1)分别求得P(ξ≥2)和P(η≥2的概率,比较即可得到结论.
(1)设考生甲、乙正确完成实验操作的题数分别为ξ,η,
则ξ取值分别为1,2,3;η取值分别为0,1,2,3.
P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,
∴考生甲正确完成题数的概率分布列为
ξ | 1 | 2 | 3 |
P |
Eξ=1+2+3=2.
∵P(η=0)=,
同理P(η=1)=,P(η=2)=,P(η=3)=,
∴考生乙正确完成题数的概率分布列为
η | 0 | 1 | 2 | 3 |
P |
Eη=0+1+2+3=2.
(2)∵P(ξ≥2)==0.8,P(η≥2)=0.74,∴P(ξ≥2)>P(η≥2).
从做对题数的均值考察,两人水平相当;从至少完成2题的概率考察,甲获得通过的可能性大.
因此可以判断甲的实验操作能力较强.
【题目】进入冬天,大气流动性变差,容易形成雾握天气,从而影响空气质量.某城市环保部门试图探究车流量与空气质量的相关性,以确定是否对车辆实施限行.为此,环保部门采集到该城市过去一周内某时段车流量与空气质量指数的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
车流量(x万辆) | 10 | 9 | 9.5 | 10.5 | 11 | 8 | 8.5 |
空气质量指数y | 78 | 76 | 77 | 79 | 80 | 73 | 75 |
(1)根据表中周一到周五的数据,求关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?
附:回归方程中斜率和截距最小二乘估计公式分别为:
其中: