题目内容
已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,写出直线l的方程;
(3)当直线l的倾斜角为45°时,求弦AB的长.
(1)2x-y-2=0 (2) x-y=0 (3)
解析:
(1)已知圆C:(x-1)2+y2=9的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即2x-y-2=0.
(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=(x-2),即x+2y-6=0.
(3)当直线l的倾斜角为45°时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.
圆心到直线l的距离为,圆的半径为3,弦AB的长为.
练习册系列答案
相关题目