题目内容
已知f(x)(x∈R,x≠1 |
a |
(1)求f(x)的表达式;
(2)数列{an}满足:a1=
2 |
3 |
an |
1-an |
(3)在(2)的条件下,若cn=
1 |
bn+(-1)n |
3 |
2 |
分析:(1)由f(x)=
,知
,由此能求出f(x)的表达式.
(2)由bn+1=2bn,能够证明{bn}是首项为2,公比为2的等比数列.
(3)由bn=2n,知Cn=
,所以C2k+C2k+1=
+
=
<
=
+
.由此能够证明Sn<
.
2bx |
ax-1 |
|
(2)由bn+1=2bn,能够证明{bn}是首项为2,公比为2的等比数列.
(3)由bn=2n,知Cn=
1 |
2n+(-1)n |
1 |
22k+1 |
1 |
22k+1-1 |
22k+22k+1 |
22k•22k+1+22k-1 |
22k+22k+1 |
22k•22k+1 |
1 |
22k |
1 |
22k+1 |
3 |
2 |
解答:解:(1)∵f(x)=
,
∴
,
∴
⇒
⇒f(x)=
(2)证明:∵a1=
,an+1=f(an),bn=
(n∈N*),
∴b1=
=2,
bn+1=2bn,
∴{bn}是首项为2,公比为2的等比数列.
(3)∵bn=2n,
∴Cn=
∴C2k+C2k+1=
+
=
<
=
+
∴n为奇数时,Sn=C1+(C2+C3)+…+(Cn-1+Cn)<1+
+
+…+
=1+
=
-
<
n为偶数时,Sn<Sn+1<
综合以上,Sn<
2bx |
ax-1 |
∴
|
∴
|
|
2x |
x+1 |
(2)证明:∵a1=
2 |
3 |
an |
1-an |
∴b1=
| ||
1-
|
bn+1=2bn,
∴{bn}是首项为2,公比为2的等比数列.
(3)∵bn=2n,
∴Cn=
1 |
2n+(-1)n |
∴C2k+C2k+1=
1 |
22k+1 |
1 |
22k+1-1 |
22k+22k+1 |
22k•22k+1+22k-1 |
22k+22k+1 |
22k•22k+1 |
1 |
22k |
1 |
22k+1 |
∴n为奇数时,Sn=C1+(C2+C3)+…+(Cn-1+Cn)<1+
1 |
22 |
1 |
23 |
1 |
2n |
=1+
| ||||
1-
|
3 |
2 |
1 |
2n |
3 |
2 |
n为偶数时,Sn<Sn+1<
3 |
2 |
综合以上,Sn<
3 |
2 |
点评:本题考查函数与数列的综合应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目