题目内容

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日    期 12月1日 12月2日 12月3日 12月4日 12月5日
温差x(°C) 10 11 13 12 8
发芽数y(颗) 23 25 30 26 16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是不相邻2天数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
y
=bx+a

参考公式:
b
=
n
i=1
(xi-
.
x
)  (yi-
.
y
n
i=1
(xi-
.
x
2
=
n
i=1
xi yi-n 
.
x
.
y
n
i=1
x
2
i
-n
-2
x
a
=
.
y
-
b
.
x
分析:(1)根据题意,由组合数公式计算出从5组数据中选取2组数据的情况数目,分析可得抽到相邻两组数据的情况的基本事件个数,再由对立事件概率公式求出答案;
(2)由表中数据,求出x,y的平均数,代入回归直线系数计算公式,可得
?
b
?
a
的值,即可求出回归直线方程.
解答:解:(1)设抽到不相邻两组数据为事件A,
从5组数据中选取2组数据共有C52=10种情况,
每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,
所以P(A)=1-
4
10
=
3
5

(2)由数据,求得
.
x
=
10+11+13+12+8
5
=12,
.
y
23+25+30+26+16
5
=27,
由公式,求得
?
b
=
5
2

?
a
=
.
y
-a
.
x
=-3;
所以y关于x的线性回归方程为
?
y
=
5
2
x-3.
点评:本题考查等可能事件概率的计算与用最小二乘法求线性回归方程,计算量比较大,注意准确计算即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网