题目内容
若是函数的两个不同的零点,且,,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于
A.6 B.7 C.8 D.9
已知实数满足,则直线恒过定点 ,该直线被圆所截得弦长的取值范围为 .
设点是双曲线(>0,>0)上一点,分别是双曲线的左、右焦点,为△的内心,若,则该双曲线的离心率是_______
已知曲线C1的极坐标方程为ρ2cos2θ=8,曲线C2的极坐标方程为,曲线C1、C2相交于A、B两点.(p∈R)
(Ⅰ)求A、B两点的极坐标;
(Ⅱ)曲线C1与直线(t为参数)分别相交于M,N两点,求线段MN的长度.
已知F1,F2是双曲线的左右焦点,若双曲线右支上存在一点与点F1关于直线对称,则该双曲线的离心率为
A. B. C.2 D.
△ABC的内角的对边分别为,若成等比数列,且,则
A. B. C. D.
如图,已知空间四边形中,,是的中点。
求证:(1)平面CDE
(2)平面平面
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;
(2)证明:平面D1AC⊥平面BB1C1C;
(3)求点D到平面D1AC的距离.
双曲线的渐近线方程是()
A. B.
C. D.