题目内容

 (2012年高考江西卷理科20) (本题满分13分)

已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点Mxy)满足.

(1)       求曲线C的方程;

(2)动点Qx0y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得lPAPB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值。若不存在,说明理由。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网