题目内容
用数学归纳法证明:n∈N*,(n+1)(n+2)…(n+n)=2n•1•3•(2n-1),从k到k+1时左边需增代数式等于
2(2k+1)
2(2k+1)
.分析:分别写出n=k时左边的式子和n=k+1时左边的式子,用n=k+1时左边的式子,除以n=k时左边的式子,得到的代数式即为所求.
解答:解:首先写出当n=k时和n=k+1时等式左边的式子,
当n=k时,左边等于 (k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),①
当n=k+1时,左边等于 (k+2)(k+3)…(k+k)(2k+1)(2k+2),②
故从n=k到n=k+1的证明,左边需增添的代数式是由
得到
=2(2k+1),
故答案为:2(2k+1).
当n=k时,左边等于 (k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),①
当n=k+1时,左边等于 (k+2)(k+3)…(k+k)(2k+1)(2k+2),②
故从n=k到n=k+1的证明,左边需增添的代数式是由
② |
① |
(2k+1)(2k+2) |
(k+1) |
故答案为:2(2k+1).
点评:本题考查用数学归纳法证明等式,本题解题的关键是写出n=k+1时和n=k时的式子,两边作比较就可以得到结果,这种题目的项数容易出错.
练习册系列答案
相关题目
在用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*)时,从k到k+1,左端需要增加的代数式是( )
A、2k+1 | ||
B、2(2k+1) | ||
C、
| ||
D、
|