题目内容
【题目】近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在省的发展情况,省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的,两项指标数,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指标数 | 2 | 4 | 5 | 6 | 8 |
指标数 | 3 | 4 | 4 | 4 | 5 |
经计算得:,,.
(1)试求与间的相关系数,并利用说明与是否具有较强的线性相关关系(若,则线性相关程度很高,可用线性回归模型拟合);
(2)建立关于的回归方程,并预测当指标数为7时,指标数的估计值;
(3)若城市的网约车指标数落在区间之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至指标数回落到区间之内.现已知2018年11月该城市网约车的指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.
附:相关公式:,,.
参考数据:,.
【答案】(1),与具有较强的线性相关关系,可用线性回归模型拟合与的关系;(2),当时,;(3)要介入进行治理.
【解析】
(1)由已知数据可得,利用公式,求得相关系数,即可作出判断,得到结论;
(2)由(1),求得和,求得回归直线的方程,代入,即可求得回归方程;
(3)由,而,即可得到结论.
(1)由已知数据可得,.所以相关系数 .
因为,所以与具有较强的线性相关关系,可用线性回归模型拟合与的关系.
(2)由(1)可知,,
所以与之间线性回归方程为.
当时,.
(3),而,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理.
【题目】随着食品安全问题逐渐引起人们的重视,有机、健康的高端绿色蔬菜越来越受到消费者的欢迎,同时生产—运输—销售一体化的直销供应模式,不仅减少了成本,而且减去了蔬菜的二次污染等问题.
(1)在有机蔬菜的种植过程中,有机肥料使用是必不可少的.根据统计某种有机蔬菜的产量与有机肥料的用量有关系,每个有机蔬菜大棚产量的增加量(百斤)与使用堆沤肥料(千克)之间对应数据如下表
使用堆沤肥料(千克) | 2 | 4 | 5 | 6 | 8 |
产量的增加量(百斤) | 3 | 4 | 4 | 4 | 5 |
依据表中的数据,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个有机蔬菜大棚使用堆沤肥料10千克,则每个有机蔬菜大棚产量增加量是多少百斤?
(2)某大棚蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市.“乐购”生鲜超市以每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且);
前8小时内的销售量(单位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
频数 | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,当购进17份比购进18份的利润的期望值大时,求的取值范围.
附:回归直线方程为,其中.