ÌâÄ¿ÄÚÈÝ

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬ÇÒµãP£¨an£¬an+1£©ÔÚÖ±Ïßx-y+1=0ÉÏ¡£
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôº¯Êý£¨n¡ÊN£¬ÇÒn¡Ý2£©£¬Çóº¯Êýf£¨n£©µÄ×îСֵ£»
£¨3£©Éèbn=£¬Sn±íʾÊýÁÐ{bn}µÄÇ°nÏîºÍ¡£ÊÔÎÊ£ºÊÇ·ñ´æÔÚ¹ØÓÚnµÄÕûʽg£¨n£©£¬Ê¹µÃS1+S2+S3+¡­+Sn-1=£¨Sn-1£©¡¤g£¨n£©¶ÔÓÚÒ»Çв»Ð¡ÓÚ2µÄ×ÔÈ»Êýnºã³ÉÁ¢£¿ Èô´æÔÚ£¬Ð´³ög£¨n£©µÄ½âÎöʽ£¬²¢¼ÓÒÔÖ¤Ã÷£»Èô²»´æÔÚ£¬ÊÔ˵Ã÷ÀíÓÉ¡£

½â£º£¨1£©ÓɵãPÔÚÖ±Ïßx-y+1=0ÉÏ£¬¼´£¬ÇÒ£¬ÊýÁÐ{}ÊÇÒÔ1ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬Í¬ÑùÂú×㣬ËùÒÔ
£¨2£©


ËùÒÔf£¨n£©Êǵ¥µ÷µÝÔö£¬¹Êf£¨n£©µÄ×îСֵÊÇf£¨2£©=
£¨3£©£¬¿ÉµÃ£¬


¡­¡­


£¬n¡Ý2 £¬
¹Ê´æÔÚ¹ØÓÚnµÄÕûʽg£¨x£©=n,ʹµÃ¶ÔÓÚÒ»Çв»Ð¡ÓÚ2µÄ×ÔÈ»Êýnºã³ÉÁ¢¡£

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿