题目内容
某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分。每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
(Ⅰ)(Ⅱ)他们都在选择方案甲进行抽奖时,累计得分的数学期望最大
解析
练习册系列答案
相关题目
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收货量(单位:kg)与它的“相近”作物株数之间的关系如下表所示:
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米。
(Ⅰ)完成下表,并求所种作物的平均年收获量;
Y | 51 | 48 | 45 | 42 |
频数 | | 4 | | |
某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)
如下表所示:
| A | B | C | D | E |
身高 | 1.69 | 1.73 | 1.75 | 1.79 | 1.82 |
体重指标 | 19.2 | 25.1 | 18.5 | 23.3 | 20.9 |
(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率
(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望。
某市直小学为了加强管理,对全校教职工实行新的临时事假制度:“每位教职工每月在正常的工作时间,临时有事,可请假至多三次,每次至多一小时”.现对该制度实施以来50名教职工请假的次数进行调查统计,结果如下表所示:
请假次数 | ||||
人数 |
(1)从该小学任选两名教职工,用表示这两人请假次数之和,记“函数在区间上有且只有一个零点”为事件,求事件发生的概率;
(2)从该小学任选两名职工,用表示这两人请假次数之差的绝对值,求随机变量的分布列及数学期望.