ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶þ´Îº¯Êýf£¨t£©=at2-b |
1 |
4a |
x-a |
x |
£¨1£©Ç󼯺ÏAºÍB£»
£¨2£©¶¨Ò壺¡°A-B={x¡ÊA£¬ÇÒx∉B}¡±Éèa£¬b£¬x¾ùΪÕûÊý£¬ÇÒx¡ÊA£®¼ÇP£¨E£©ÎªxÈ¡×Ô¼¯ºÏA-BµÄ¸ÅÂÊ£¬P£¨F£©xÈ¡¼¯ºÏA¡ÉBµÄ¸ÅÂÊ£®ÒÑÖªP£¨E£©=
2 |
3 |
1 |
3 |
¢ÙÇóa1£¬a2£¬a3ºÍb1£¬b2£¬b3£»
¢ÚÇëд³öÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£¨²»±ØÖ¤Ã÷£©£»
¢ÛÈç¹ûÔÚº¯ÊýÖÐf£¨t£©ÖУ¬a=an£¬b=bn£¬¼Çf£¨t£©µÄ×î´óֵΪg£¨n£©£¬cn=
1-12g(n) |
4g(n) |
·ÖÎö£º£¨1£©ÓÉf£¨t£©ÓÐ×î´óÖµ£¬Öªa£¼0£®ÓÉf£¨t£©max=
µÃb£¾1£¬ÓÉ´ËÄÜÇó³ö¼¯ºÏAºÍB£®
£¨2£©¢ÙÒòΪP£¨E£©=
£¬P£¨F£©=
£¬ÔÙÓÉAÖÐÕûÊýµÄ¸öÊý£¬·Ö±ðÇó³öa1£¬a2£¬a3ºÍb1£¬b2£¬b3£®
¢Úan=-3n-1£¬bn=n+1£®
¢ÛÓÉg£¨n£©=
=
£¬Öªcn=
=
£¬ÓÉ´ËÄܹ»Ö¤Ã÷Sn£¼1£®
1-b |
4a |
£¨2£©¢ÙÒòΪP£¨E£©=
2 |
3 |
1 |
3 |
¢Úan=-3n-1£¬bn=n+1£®
¢ÛÓÉg£¨n£©=
1-bn |
4an |
n |
4(3n+1) |
1-12g(n) |
4g(n) |
1 |
n |
½â´ð£º½â£º£¨1£©¡ßf£¨t£©ÓÐ×î´óÖµ£¬¡àa£¼0£®
ÓÉf£¨t£©max=
µÃb£¾1£¬£¨2·Ö£©
¹ÊA={x|a£¼x£¼0}£¬B={x|-b£¼x£¼b}£¨4·Ö£©
£¨2£©¢ÙÒòΪP£¨E£©=
£¬P£¨F£©=
ËùÒÔ¿¼ÂÇÒ»ÏÂÇéÐΣº
µ±AÖÐÓÐ3¸öÕûÊýʱ£¬A-BÖÐÓÐ2¸ö£¬A¡ÉBÖÐÓÐ1¸ö£¬Ôòa=-4£¬b=2£»
µ±AÖÐÓÐ6¸öÕûÊýʱ£¬A-BÖÐÓÐ4¸ö£¬A¡ÉBÖÐÓÐ2¸ö£¬Ôòa=-7£¬b=3£»
µ±AÖÐÓÐ9¸öÕûÊýʱ£¬A-BÖÐÓÐ6¸ö£¬A¡ÉBÖÐÓÐ3¸ö£¬Ôòa=-10£¬b=4£»
¹Êa1=-4£¬a2=-7£¬a3=-10£»b1=2£¬b2=3£¬b3=4£¨7·Ö£©
¢Úan=-3n-1£¬bn=n+1£¨19·Ö£©
¢Û¡ßg£¨n£©=
=
£¬¡àcn=
=
£¬
¡àcncn+1=
¡Á
=
-
£¬¡àSn=£¨1-
£©+£¨
-
£©++£¨
-
£©=1-
£¼1
£¨13·Ö£©
ÓÉf£¨t£©max=
1-b |
4a |
¹ÊA={x|a£¼x£¼0}£¬B={x|-b£¼x£¼b}£¨4·Ö£©
£¨2£©¢ÙÒòΪP£¨E£©=
2 |
3 |
1 |
3 |
µ±AÖÐÓÐ3¸öÕûÊýʱ£¬A-BÖÐÓÐ2¸ö£¬A¡ÉBÖÐÓÐ1¸ö£¬Ôòa=-4£¬b=2£»
µ±AÖÐÓÐ6¸öÕûÊýʱ£¬A-BÖÐÓÐ4¸ö£¬A¡ÉBÖÐÓÐ2¸ö£¬Ôòa=-7£¬b=3£»
µ±AÖÐÓÐ9¸öÕûÊýʱ£¬A-BÖÐÓÐ6¸ö£¬A¡ÉBÖÐÓÐ3¸ö£¬Ôòa=-10£¬b=4£»
¹Êa1=-4£¬a2=-7£¬a3=-10£»b1=2£¬b2=3£¬b3=4£¨7·Ö£©
¢Úan=-3n-1£¬bn=n+1£¨19·Ö£©
¢Û¡ßg£¨n£©=
1-bn |
4an |
n |
4(3n+1) |
1-12g(n) |
4g(n) |
1 |
n |
¡àcncn+1=
1 |
n |
1 |
n+1 |
1 |
n |
1 |
n+1 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×ÐϸÇó½â£¬×¢Ò⹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿