题目内容
10.已知集合A={y|y=log2x,0<x<1},B={y|y=($\frac{1}{2}$)x,x>1},则(∁RA)∩B=( )A. | (0,$\frac{1}{2}$) | B. | (0,1) | C. | ($\frac{1}{2}$,1) | D. | ∅ |
分析 求出A中y的范围确定出A,求出B中y的范围确定出B,找出A补集与B的交集即可.
解答 解:由A中y=log2x,0<x<1,得到y<0,即A=(-∞,0),
∴∁RA=[0,+∞),
由B中y=($\frac{1}{2}$)x,x>1,得到0<y<$\frac{1}{2}$,即B=(0,$\frac{1}{2}$),
则(∁RA)∩B=(0,$\frac{1}{2}$),
故选:A.
点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
1.已知$tanα=2,则\frac{{{{sin}^2}α-{{cos}^2}α+2}}{{2{{sin}^2}α+{{cos}^2}α}}$等于( )
A. | $\frac{13}{9}$ | B. | $\frac{11}{9}$ | C. | $\frac{6}{7}$ | D. | $\frac{4}{7}$ |
2.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的左焦点为(-2,0),离心率为$\frac{1}{2}$,则C的标准方程为( )
A. | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$ | B. | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$ | C. | $\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}=1$ | D. | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$ |