题目内容
已知函数().
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,,总有,求实数的取值范围.
(1)(2)
解析试题分析:(1)∵(),
∴在上是减函数,
又定义域和值域均为,∴ ,
即 , 解得 . ……4分
(2)若,又,且,
∴,. ……6分
∵对任意的,,总有,
∴, ……8分
即 ,
解得 , 又, ∴.
若, ……10分
显然成立,
综上。 ……12分
考点:本小题主要考查二次函数的单调性、最值的求解和应用,考查含绝对值的不等式的求解和应用,考查学生转化问题的能力和分类讨论思想的应用.
点评:求解含绝对值的不等式,关键是想方设法去掉绝对值号,而去绝对值号的方法一般是分类讨论.
练习册系列答案
相关题目