ÌâÄ¿ÄÚÈÝ
±¾ÌâÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡¿¼Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£®Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö
£¨1£©¶þ½×¾ØÕóM¶ÔÓ¦µÄ±ä»»½«ÏòÁ¿
£¬
·Ö±ð±ä»»³ÉÏòÁ¿
£¬
£¬Ö±ÏßlÔÚMµÄ±ä»»ÏÂËùµÃµ½µÄÖ±Ïßl¡äµÄ·½³ÌÊÇ2x-y-1=0£¬ÇóÖ±ÏßlµÄ·½³Ì£®
£¨2£©¹ýµãP£¨-3£¬0£©ÇÒÇãб½ÇΪ30¡ãµÄÖ±ÏßlºÍÇúÏßC£º
£¨sΪ²ÎÊý£©ÏཻÓÚA£¬BÁ½µã£¬ÇóÏ߶ÎABµÄ³¤£®
£¨3£©Èô²»µÈʽ|a-1|¡Ýx+2y+2z£¬¶ÔÂú×ãx2+y2+z2=1µÄÒ»ÇÐʵÊýx£¬y£¬zºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
£¨1£©¶þ½×¾ØÕóM¶ÔÓ¦µÄ±ä»»½«ÏòÁ¿
|
|
|
|
£¨2£©¹ýµãP£¨-3£¬0£©ÇÒÇãб½ÇΪ30¡ãµÄÖ±ÏßlºÍÇúÏßC£º
|
£¨3£©Èô²»µÈʽ|a-1|¡Ýx+2y+2z£¬¶ÔÂú×ãx2+y2+z2=1µÄÒ»ÇÐʵÊýx£¬y£¬zºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
£¨1£©ÉèM=
£¬ÔòÓÉÌâÖª
=
£¬
=
ËùÒÔ
£¬½âµÃ
£¬ËùÒÔM=
£®
ÉèµãP£¨x£¬y£©ÊÇÖ±ÏßlÉÏÈÎÒ»µã£¬ÔÚM±ä»»Ï¶ÔÓ¦µÄµãΪP¡ä£¨x0£¬y0£©£¬
ÄÇô
=
¼´
£®
ÒòΪ2x0-y0-1=0£¬¡à2£¨-x-4y£©-£¨3x+5y£©-1=0 ¼´5x+13y+1=0£¬
Òò´ËÖ±ÏßlµÄ·½³ÌÊÇ5x+13y+1=0£®
£¨2£©ÓÉÒÑÖª£¬Ö±ÏߵIJÎÊý·½³ÌΪ
tΪ²ÎÊý£©£¬
ÇúÏß
sΪ²ÎÊý£©¿ÉÒÔ»¯Îªx2-y2=4£®
½«Ö±ÏߵIJÎÊý·½³Ì´úÈëÉÏʽ£¬µÃt2-6
t+10=0£®
ÉèA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬¡àt1+t2=£¬t1t2=10£®
¡àAB=|t1-t2|=
=2
£®
£¨3£©ÓÉ¿ÂÎ÷²»µÈʽ9=£¨12+22+22£©•£¨x2+y2+z2£©¡Ý£¨1•x+2•y+2•z£©2
¼´x+2y+2z¡Ü3£¬µ±ÇÒ½öµ±
¼´x=
£¬y=
£¬z=
ʱ£¬x+2y+2zÈ¡µÃ×î´óÖµ3£®
¡ß²»µÈʽ|a-1|¡Ýx+2y+2z£¬¶ÔÂú×ãx2+y2+z2=1µÄÒ»ÇÐʵÊýx£¬y£¬zºã³ÉÁ¢£¬
Ö»Ðè|a-1|¡Ý3£¬½âµÃa-1¡Ý3»òa-1¡Ü-3£¬¡àa¡Ý4»ò¡àa¡Ü-2£®
¼´ÊµÊýµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬-2]¡È[4£¬+¡Þ£©£®
|
|
|
|
|
|
|
ËùÒÔ
|
|
|
ÉèµãP£¨x£¬y£©ÊÇÖ±ÏßlÉÏÈÎÒ»µã£¬ÔÚM±ä»»Ï¶ÔÓ¦µÄµãΪP¡ä£¨x0£¬y0£©£¬
ÄÇô
|
|
|
|
ÒòΪ2x0-y0-1=0£¬¡à2£¨-x-4y£©-£¨3x+5y£©-1=0 ¼´5x+13y+1=0£¬
Òò´ËÖ±ÏßlµÄ·½³ÌÊÇ5x+13y+1=0£®
£¨2£©ÓÉÒÑÖª£¬Ö±ÏߵIJÎÊý·½³ÌΪ
|
ÇúÏß
|
½«Ö±ÏߵIJÎÊý·½³Ì´úÈëÉÏʽ£¬µÃt2-6
3 |
ÉèA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬¡àt1+t2=£¬t1t2=10£®
¡àAB=|t1-t2|=
(t1+t2)2-4t1t2 |
17 |
£¨3£©ÓÉ¿ÂÎ÷²»µÈʽ9=£¨12+22+22£©•£¨x2+y2+z2£©¡Ý£¨1•x+2•y+2•z£©2
¼´x+2y+2z¡Ü3£¬µ±ÇÒ½öµ±
|
¼´x=
1 | ||
|
2 | ||
|
2 | ||
|
¡ß²»µÈʽ|a-1|¡Ýx+2y+2z£¬¶ÔÂú×ãx2+y2+z2=1µÄÒ»ÇÐʵÊýx£¬y£¬zºã³ÉÁ¢£¬
Ö»Ðè|a-1|¡Ý3£¬½âµÃa-1¡Ý3»òa-1¡Ü-3£¬¡àa¡Ý4»ò¡àa¡Ü-2£®
¼´ÊµÊýµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬-2]¡È[4£¬+¡Þ£©£®
![](http://thumb.zyjl.cn/images/loading.gif)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿