题目内容

化简
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)
=
-tanα
-tanα
分析:利用诱导公式将原函数化简为:原式=
-sinα•(-cosα)(-sinα)(-sinα)
(-cosα)•sinα•sinα•cosα
,整理即可.
解答:解:
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

=
-sinα•(-cosα)(-sinα)(-sinα)
(-cosα)•sinα•sinα•cosα

=-tanα.
故答案为:-tanα.
点评:本题考查诱导公式的作用,关键在于熟练掌握诱导公式,考查学生记忆公式与应用公式的能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网