题目内容

祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家、祖冲之的儿子祖暅首先提出来的. 祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等. 可以用诗句“两个胖子一般高,平行地面刀刀切,刀刀切出等面积,两人必然同样胖”形象表示其内涵. 利用祖暅原理可以推导几何体的体积公式,关键是要构造一个参照体.

试用祖暅原理推导球的体积公式.

解:我们先推导半球的体积. 为了计算半径为R的半球的体积,我们先观察这三个量(等底等高)之间的不等关系,可以发现<<,即,根据这一不等关系,我们可以猜测,并且由猜测可发现.

下面进一步验证了猜想的可靠性. 关键是要构造一个参照体,这样的参照体我们可以用圆柱内挖去一个圆锥构造出,如右图所示. 下面利用祖暅原理证明猜想.

证明:用平行于平面α的任意一个平面去截这两个几何体,截面分别为圆面和圆环面. 如果截平面与平面α的距离为,那么圆面半径,圆环面的大圆半径为R,小圆半径为r.

因此, ∴  .

根据祖暅原理,这两个几何体的体积相等,即

所以.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网