题目内容
(2013•揭阳二模)设f(x)是定义在(0,1)上的函数,对任意的y>x>1都有f(
)=f(
)-f(
),记an=f(
)(n∈N*),则
ai=( )
y-x |
xy-1 |
1 |
x |
1 |
y |
1 |
n2+5n+5 |
8 |
i=1 |
分析:依题意,可求得an=f(
)-f(
),利用累加法即可求得故
ai=f(
)-f(
),逆用已知条件即可得到答案.
1 |
n+2 |
1 |
n+3 |
8 |
i=1 |
1 |
3 |
1 |
11 |
解答:解:因an=f(
)=f(
)=f(
)-f(
),
故
ai=a1+a2+…+a8=f(
)-f(
)+f(
)-f(
)+…+f(
)-f(
)
=f(
)-f(
)
=f(
)
=f(
),
故选C.
1 |
n2+5n+5 |
(n+3)-(n+2) |
(n+3)(n+2)-1 |
1 |
n+2 |
1 |
n+3 |
故
8 |
i=1 |
1 |
3 |
1 |
4 |
1 |
4 |
1 |
5 |
1 |
10 |
1 |
11 |
=f(
1 |
3 |
1 |
11 |
=f(
11-3 |
11×3-1 |
=f(
1 |
4 |
故选C.
点评:本题考查抽象函数及其应用,求得an=f(
)-f(
)是关键,也是难点,考查观察与推理能力,属于中档题.
1 |
n+2 |
1 |
n+3 |
练习册系列答案
相关题目