题目内容
(本小题14分)
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709143427.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231817093469019.jpg)
(1)证
明:AB
;
(2)求面VAD与面VDB所成的二面角的余弦值。
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709143427.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231817093469019.jpg)
(1)证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318170936272.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709377374.gif)
(2)求面VAD与面VDB所成的二面角的余弦值。
本题14分)
方法一:(用传统方法)(1)证明:平面VAD
平面ABCD,AB
AD,AB
平面ABCD,
面VAD
ABCD=AD,
面VAD
(2) 取VD中点E,连接AE,BE,
是正三角形,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709549752.gif)
面VAD, AE,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709752453.gif)
AB
VD,AB
AE
AB
VD, AB
AE=A,且AB,AE
平面ABE,
VD
平面ABE,
,
BE
VD,
是所求的二面角的平面角。
在RT
中,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710048631.gif)
方法二:(空间向量法)以D为坐标原点,建立空间直角坐标系如图
(1)证明:不妨设A(1,0,0), B(1,1,0),
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318171011073.gif)
,
因此AB与平面VAD内两条相交直线VA,AD都垂直,
面VAD
(2)取VD的中点E,则
,
,由
=0,得
,因此
是所求二面角的平面角。![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231817102661150.gif)
方法一:(用传统方法)(1)证明:平面VAD
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709408108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709408108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709440135.gif)
面VAD
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709455152.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709486273.gif)
(2) 取VD中点E,连接AE,BE,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709502417.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709549752.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709564280.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709752453.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709783128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709408108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709408108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709830461.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709408108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709455152.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709440135.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709783128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709408108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709939462.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709783128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709408108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709986408.gif)
在RT
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710001404.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710032799.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710048631.gif)
方法二:(空间向量法)以D为坐标原点,建立空间直角坐标系如图
(1)证明:不妨设A(1,0,0), B(1,1,0),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710079612.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710095403.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318171011073.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710126658.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710142835.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181709486273.gif)
(2)取VD的中点E,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231817101731180.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710204660.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710220334.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710235661.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181710251393.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231817102661150.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目