题目内容

12、设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若m?α,n?α,l⊥m,l⊥n,则l⊥α;②若l∥m,m⊥α,n⊥α,则l∥n;③若α∥β,l?α,则l∥β;④若l∥α,l⊥β,则α⊥β.其中正确命题的序号是
②③④
分析:①若m?α,n?α,l⊥m,l⊥n,则l⊥α,由线面垂直的判定定理进行判断;
②若l∥m,m⊥α,n⊥α,则l∥n,由线线平行的传递性可得;
③若α∥β,l?α,则l∥β,由线面平行的定义可得;
④若l∥α,l⊥β,则α⊥β,线面面垂直的判定可得.
解答:解:①若m?α,n?α,l⊥m,l⊥n,则l⊥α,是错误命题,由线面垂直的判定定理知,当m,n两直线平行时,不能得出线面垂直;
②若l∥m,m⊥α,n⊥α,则l∥n,是一个正确命题,垂直于同一个平面的两直线平行,平行于同一条直线的两直线也平行,故可证得;
③若α∥β,l?α,则l∥β是正确命题,由题设条件知l与β无公共点,由线面平行的定义知,线面平行;
④若l∥α,l⊥β,则α⊥β,是正确命题,可在面α内找到一条直线与l平行,l⊥β,则这条线也垂直于β,由此面面垂直的条件足备.
综上②③④正确
故答案为②③④
点评:本题考查空间中直线与平面之间的位置关系,解题的关键是掌握空间中线面位置关系判断的定理,本题是考查双基的题,知识性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网