题目内容

(06年湖南卷理)(14分)

 已知椭圆, 抛物线, 且的公共弦

过椭圆的右焦点 .

  (Ⅰ) 当, 求的值, 并判断抛物线的焦点是否在直线上;

  (Ⅱ) 是否存在的值, 使抛物线的焦点恰在直线上? 若存在, 求出符合条件的的值; 若不存在, 请说明理由 .

解析:(Ⅰ)当AB⊥x轴时,点A、B关于x轴对称,所以m=0,直线AB的方程为:

        x =1,从而点A的坐标为(1,)或(1,-).  因为点A在抛物线上.

所以,即.此时C2的焦点坐标为(,0),该焦点不在直线AB上.

(II)解法一: 假设存在的值使的焦点恰在直线AB上,由(I)知直线AB

的斜率存在,故可设直线AB的方程为

消去………………①

设A、B的坐标分别为(x1,y1), (x2,y2),  

则x1,x2是方程①的两根,x1+x2.

  由 

消去y得.          ………………②

因为C2的焦点在直线上,

所以,即.代入②有.

.                          …………………③

由于x1,x2也是方程③的两根,所以x1+x2.

从而. 解得   ……………………④

又AB过C1、、\、、C2的焦点,所以

    …………………………………⑤

由④、⑤式得,即

解得于是

因为C2的焦点在直线上,所以.

 

由上知,满足条件的存在,且

解法二:设A、B的坐标分别为

因为AB既过C1的右焦点,又过C2的焦点

所以.

.           ……①

由(Ⅰ)知,于是直线AB的斜率, ……②

且直线AB的方程是,

所以.        ……③

又因为,所以.    ……④

将①、②、③代入④得.  ……………⑤

  因为,所以.  …………⑥

将②、③代入⑥得  ……………⑦

由⑤、⑦得

解得.将代入⑤得

   

由上知,满足条件的存在,且

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网