题目内容
4.设等比数列{an}的通项公式为an=2n-1,记bn=2(log2an+1)(n∈N*),证明:对任意的n∈N*,不等式$\frac{{b}_{1}+1}{{b}_{1}}$•$\frac{{b}_{2}+1}{{b}_{2}}$…$\frac{{b}_{n+1}}{{b}_{n}}$>$\sqrt{n+1}$成立.分析 由已知结合对数的运算性质求得bn=2n,得到$\frac{{b}_{n}+1}{{b}_{n}}=\frac{2n+1}{2n}$,代入Tn=$\frac{{b}_{1}+1}{{b}_{1}}$•$\frac{{b}_{2}+1}{{b}_{2}}$…$\frac{{b}_{n+1}}{{b}_{n}}$,两边平方后放大,再开方得答案.
解答 证明:∵an=2n-1,
bn=2(log2an+1)=$2(lo{g}_{2}{2}^{n-1}+1)=2n$,
∴$\frac{{b}_{n}+1}{{b}_{n}}=\frac{2n+1}{2n}$,
令Tn=$\frac{{b}_{1}+1}{{b}_{1}}$•$\frac{{b}_{2}+1}{{b}_{2}}$…$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{3}{2}×\frac{5}{4}×…×\frac{2n+1}{2n}$,
则${{T}_{n}}^{2}=(\frac{3}{2})^{2}×(\frac{5}{4})^{2}×…×(\frac{2n+1}{2n})^{2}$$>(\frac{3}{2}×\frac{4}{3})(\frac{5}{4}×\frac{6}{5})…(\frac{2n+1}{2n}×\frac{2n+2}{2n+1})$=$\frac{2n+2}{2}=n+1$.
∴Tn=$\frac{{b}_{1}+1}{{b}_{1}}$•$\frac{{b}_{2}+1}{{b}_{2}}$…$\frac{{b}_{n+1}}{{b}_{n}}$$>\sqrt{n+1}$.
点评 本题是数列与不等式的综合题,考查了对数的运算性质,考查了放缩法证明数列不等式,是中档题.