题目内容
已知函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181535421429273/SYS201310241815354214292011_ST/0.png)
A.1
B.2
C.3
D.4
【答案】分析:根据函数的单调性的性质,我们可以判断出函数数
为减函数,再由正实数a、b、c满足f(c)<0<f(a)<f(b).,若实数d是函数f(x)的一个零点,我们易判断出a,b,c,d的大小,进而得到答案.
解答:解:∵函数
为减函数,
又∵正实数a、b、c满足f(c)<0<f(a)<f(b),
实数d是函数f(x)的一个零点
∴f(c)<f(d)<f(a)<f(b),
∴c>d>a>b
故①②正确
故选B
点评:本题考查的知识点是对数函数的单调性,指数函数的单调性,函数的零点,其中根据已知中函数的解析式,结合函数的单调性的性质,判断出函数数
为减函数,是解答本题的关键.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181535421429273/SYS201310241815354214292011_DA/0.png)
解答:解:∵函数
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181535421429273/SYS201310241815354214292011_DA/1.png)
又∵正实数a、b、c满足f(c)<0<f(a)<f(b),
实数d是函数f(x)的一个零点
∴f(c)<f(d)<f(a)<f(b),
∴c>d>a>b
故①②正确
故选B
点评:本题考查的知识点是对数函数的单调性,指数函数的单调性,函数的零点,其中根据已知中函数的解析式,结合函数的单调性的性质,判断出函数数
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181535421429273/SYS201310241815354214292011_DA/2.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目