题目内容

已知等差数列{an}的通项公式an=2n-1(n=1,2,3,…),记T1=a1,Tn=
Tn-1a
n+1
2
,n为奇数
 Tn-1+a
n
2
+a
n
2
+1
,n为偶数
(n=2,3,…),那么T2n=(  )
分析:根据Tn=
Tn-1a
n+1
2
,n为奇数
 Tn-1+a
n
2
+a
n
2
+1
,n为偶数
(n=2,3,…),可利用迭代法把T2n化简,最后化为含数列{an}的各项的式子,在根据数列{an}的通项公式和前n项和公式求出T2n即可.
解答:解:∵Tn=
Tn-1a
n+1
2
,n为奇数
 Tn-1+a
n
2
+a
n
2
+1
,n为偶数
(n=2,3,…),
∴T2n=T2n-1+an+an+1=T2n-2+an+an+an+1=T2n-3+an-1+an+2an+an+1=T2n-3+3an+an+1
=T1+a1+3a2+3a3+3a4+…+3an+an+1=2a1+3a2+3a3+3a4+…+3an+an+1
=2×1+
3(a2+an)(n-1) 
2
+an+1
=2+
3(3 +2n-1 )(n-1)
2
+2n+1
=2+3n2-3+2n+1=3n2+2n
故选D
点评:本题主要考查了迭代法求数列的前n项和,考查了学生的观察能力与转化能力.本解较难理解,作为一个选择题,本题可用排除法,求出前几项即可验证出正确选项
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网