题目内容

定义在某区间上的函数f(x)满足对该区间上的任意两个数x1,x2总有不等式成立,则称函数f(x)为该区间上的上凸函数. 类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:成立,则称数列{an}为上凸数列,现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10,则数列{an}中的第五项a5的取值范围为(    )。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网