题目内容
设集合A={(x,y)|x,y,1-x-y是三角形的三边长},则A所表示的平面区域(不含边界的阴影部分)是( )
A、 | B、 | C、 | D、 |
分析:先依据x,y,1-x-y是三角形的三边长,利用三角的两边之和大于第三边得到关于x,y的约束条件,再结合二元一次不等式(组)与平面区域的关系画出图形即可.
解答:解:∵x,y,1-x-y是三角形的三边长∴x>0,y>0,1-x-y>0,
并且x+y>1-x-y,x+(1-x-y)>y,y+(1-x-y)>x
∴
,
故选A.
并且x+y>1-x-y,x+(1-x-y)>y,y+(1-x-y)>x
∴
|
故选A.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.
练习册系列答案
相关题目
设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为( )
A、(1,3) | ||||
B、(1,1) | ||||
C、(
| ||||
D、(
|