ÌâÄ¿ÄÚÈÝ
Éèb£¾0,ÍÖÔ²·½³ÌΪ=1,Å×ÎïÏß·½³ÌΪx2=8(y-b).Èçͼ6Ëùʾ,¹ýµãF(0,b+2)×÷xÖáµÄƽÐÐÏß,ÓëÅ×ÎïÏßÔÚµÚÒ»ÏóÏ޵Ľ»µãΪG.ÒÑÖªÅ×ÎïÏßÔÚµãGµÄÇÐÏß¾¹ýÍÖÔ²µÄÓÒ½¹µãF1.ͼ6
(1)ÇóÂú×ãÌõ¼þµÄÍÖÔ²·½³ÌºÍÅ×ÎïÏß·½³Ì.
(2)ÉèA¡¢B·Ö±ðÊÇÍÖÔ²³¤ÖáµÄ×ó¡¢ÓҶ˵ã,ÊÔ̽¾¿ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãP,ʹµÃ¡÷ABPΪֱ½ÇÈý½ÇÐÎ?Èô´æÔÚ,ÇëÖ¸³ö¹²Óм¸¸öÕâÑùµÄµã?²¢ËµÃ÷ÀíÓÉ(²»±Ø¾ßÌåÇó³öÕâЩµãµÄ×ø±ê).
±¾ÌâÖ÷Òª¿¼²éÍÖÔ²¡¢Å×ÎïÏߵĸÅÄî,ÍÖÔ²¡¢Å×ÎïÏߵķ½³ÌµÈ»ù´¡ÖªÊ¶,ÊýÐνáºÏµÄÊýѧ˼ÏëÓë·½·¨,ÒÔ¼°ÔËËãÇó½âÄÜÁ¦.
½â£º(1)ÓÉx2=8(y-b)µÃy=+b.
µ±y=b+2ʱ,x=¡À4,
ÔòGµãµÄ×ø±êΪ(4,b+2).
ÓÚÊÇÅ×ÎïÏßx2=8(y-b)ÔÚµãGµÄÇÐÏßµÄlµÄбÂÊk==1,
ÇÐÏßlµÄ·½³ÌΪy=x+b-2.
ÓÉÍÖÔ²·½³ÌµÃF1µãµÄ×ø±êΪ(b,0)£¬
ÓÖÇÐÏßl¾¹ýÍÖÔ²µÄÓÒ½¹µãF1
¡àÓÉ0=b+b-2,½âµÃb=1.
Òò´ËÂú×ãÌõ¼þµÄÍÖÔ²·½³ÌºÍÅ×ÎïÏß·½³Ì·Ö±ðΪ+y2=1ºÍx2=8(y-1).
(2)Å×ÎïÏßÉÏ´æÔÚµãP£¬Ê¹µÃ¡÷ABPΪֱ½ÇÈý½ÇÐΣ¬ÕâÑùµÄµã¹²ÓÐ4¸ö.
¢Ù·Ö±ð¹ýA£¬B×÷xÖáµÄ´¹Ïߣ¬ÓëÅ×ÎïÏß·Ö±ð½»ÓÚÁ½µãP1£¨-£¬£©ºÍP2£¨£¬£©£¬Ôò¡÷ABP1ºÍ¡÷ABP2¶¼ÊÇÖ±½ÇÈý½ÇÐÎ.
¢ÚÒÔÔµãΪÖÐÐÄ£¬|AB|=Ϊ°ë¾¶×÷Ô²ÖÜ£¬ÓÉÓÚÔ²Öܰ뾶´óÓÚÍÖÔ²µÄ°ë¶ÌÖ᳤1£¬ÇÒÍÖÔ²ÓëÅ×ÎïÏß½ö½»ÓÚÒ»µã£¬ËùÒÔÉÏÊöÔ²ÖܱØÓëÅ×ÎïÏßÏཻÓÚÁ½µãP3ºÍP4.
Ôò¡÷ABP3ºÍ¡÷ABP4¶¼ÊÇÖ±½ÇÈý½ÇÐÎ.
ÒòΪP1AÓëÔ²ÏàÇÐÓÚµãA£¬¶øP3ÔÚÔ²ÖÜÉÏ£¬
ËùÒÔP3ÓëP1²»Öغϣ¬Í¬ÀíP4ÓëP2²»ÖغÏ.
¹ÊP1¡¢P2¡¢P3ºÍP4ÊÇÁ½Á½»¥²»ÏàͬµÄµã.