题目内容
20.已知f(x)=$\frac{{{{log}_2}x-1}}{{2{{log}_2}x+1}}$(x>2),已知f(x1)+f(2x2)=$\frac{1}{2}$,则f(x1x2)的最小值=$\frac{1}{3}$.分析 化简f(x)=$\frac{{{{log}_2}x-1}}{{2{{log}_2}x+1}}$=$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{2lo{g}_{2}x+1}$;从而可得f(x1)+f(2x2)=$\frac{1}{2}$-$\frac{3}{2}$$\frac{1}{2lo{g}_{2}{x}_{1}+1}$+$\frac{1}{2}$-$\frac{3}{2}$$\frac{1}{2lo{g}_{2}2{x}_{2}+1}$=$\frac{1}{2}$,从而可得$\frac{1}{lo{g}_{2}(2{x}_{1}^{2})}$+$\frac{1}{lo{g}_{2}(8{x}_{2}^{2})}$=$\frac{1}{3}$;由不等式的性质可得log2(x1x2)≥4;故f(x1x2)=$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{2log({x}_{1}{x}_{2})+1}$≥$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{9}$=$\frac{1}{3}$.
解答 解:f(x)=$\frac{{{{log}_2}x-1}}{{2{{log}_2}x+1}}$=$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{2lo{g}_{2}x+1}$;
f(x1)+f(2x2)=$\frac{1}{2}$-$\frac{3}{2}$$\frac{1}{2lo{g}_{2}{x}_{1}+1}$+$\frac{1}{2}$-$\frac{3}{2}$$\frac{1}{2lo{g}_{2}2{x}_{2}+1}$=$\frac{1}{2}$,
即$\frac{1}{2lo{g}_{2}{x}_{1}+1}$+$\frac{1}{2lo{g}_{2}2{x}_{2}+1}$=$\frac{1}{3}$;
即$\frac{1}{lo{g}_{2}(2{x}_{1}^{2})}$+$\frac{1}{lo{g}_{2}(8{x}_{2}^{2})}$=$\frac{1}{3}$;
∴$\frac{1}{3}$=$\frac{1}{lo{g}_{2}(2{x}_{1}^{2})}$+$\frac{1}{lo{g}_{2}(8{x}_{2}^{2})}$=$\frac{lo{g}_{2}(2{x}_{1}^{2})+lo{g}_{2}(8{x}_{2}^{2})}{lo{g}_{2}(2{x}_{1}^{2})lo{g}_{2}(8{x}_{2}^{2})}$≥$\frac{lo{g}_{2}(2{x}_{1}^{2})+lo{g}_{2}(8{x}_{2}^{2})}{(\frac{lo{g}_{2}(2{x}_{1}^{2})+lo{g}_{2}(8{x}_{2}^{2})}{2})^{2}}$=$\frac{4}{lo{g}_{2}(4{x}_{1}{x}_{2})^{2}}$;
∴log2(4x1x2)2≥12;
∴log2(x1x2)≥4;
f(x1x2)=$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{2log({x}_{1}{x}_{2})+1}$≥$\frac{1}{2}$-$\frac{3}{2}$•$\frac{1}{9}$=$\frac{1}{3}$;
故答案为:$\frac{1}{3}$.
点评 本题考查了不等式的应用及函数的单调性的应用,化简比较困难,属于中档题.
A. | [-3,3] | B. | [-1,3] | C. | {-3,3} | D. | [-1,-3,3] |