题目内容


(1)求f(x)的表达式;
(2)设函数g(x)=ax2-+ f(x),则是否存在实数a,使得g(x)为奇函数?说明理由;
(3)解不等式f(x)-x>2。
解:(1)∵

(2)∵g(x)=ax2+2x的定义域为(0,+∞),
又g(1)=2+a,g(-1)不存在,
显然g(1)≠g(-1),
∴不存在实数a,使得g(x)为奇函数。
(3)∵f(x)-x>2,
∴f(x)-x-2>0,
+x-2>0,有x3-2x2+1>0,
于是(x3-x2)-(x2-1)>0,
化简,得(x-1)(x2-x+1)>0,
∴(x-1)(x-)(x-)>0,
又x>0,
∴解得:0<x<1或
因此原不等式的解集为{x0<x<1或}。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网