题目内容
[番茄花园1] 本题共有2个小题,第一个小题满分5分,第2个小题满分8分。
已知数列的前项和为,且,
(1)证明:是等比数列;
(2)求数列的通项公式,并求出n为何值时,取得最小值,并说明理由。
同理可得,当n≤15时,数列{Sn}单调递减;故当n=15时,Sn取得最小值.
[番茄花园1]20.
[番茄花园1] (本题满分l4分)如图,一个小球从M处投入,通过管道自
上而下落A或B或C。已知小球从每个叉口落入左右两个
管道的可能性是相等的.
某商家按上述投球方式进行促销活动,若投入的小球落
到A,B,C,则分别设为l,2,3等奖.
(I)已知获得l,2,3等奖的折扣率分别为50%,70%,
90%.记随变量为获得k(k=1,2,3)等奖的折扣
率,求随机变量的分布列及期望;
(II)若有3人次(投入l球为l人次)参加促销活动,记随机
变量为获得1等奖或2等奖的人次,求.
[番茄花园1]1.
[番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数、、满足,则称比远离.
(1)若比1远离0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比远离;
(3)已知函数的定义域.任取,等于和中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).
23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆于、两点,交直线于点.若,证明:为的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点、满足,写出求作点、的步骤,并求出使、存在的θ的取值范围.
[番茄花园1]22.