题目内容
(本小题12分)已知二次函数
满足
且
.
(1)求
的解析式;
(2) 当
时,不等式:
恒成立,求实数
的范围.
(3)设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117959724.gif)
,求
的最大值;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117834270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117850475.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117866321.gif)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117834270.gif)
(2) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117897313.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117928509.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117944204.gif)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117959724.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082316411797573.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118006262.gif)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118022408.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118037264.gif)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641180531131.gif)
(1)解:令
代入:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641181003223.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641181153053.jpg)
得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641181311146.gif)
∴
∴
(2)当
时,
恒成立
即:
恒成立;![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082316411825672.gif)
令
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117897313.gif)
则对称轴:
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118349574.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118037264.gif)
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641183801080.gif)
对称轴为:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118412450.gif)
当
时,即:
;如图1:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641184741044.gif)
②当
时,即:
;如图2:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641185211049.gif)
综上所述:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118084697.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641181003223.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641181153053.jpg)
得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641181311146.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118162584.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118022408.gif)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117897313.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117928509.gif)
即:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118240479.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082316411825672.gif)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118287801.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164117897313.gif)
则对称轴:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118318527.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118349574.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118037264.gif)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641183801080.gif)
对称轴为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118412450.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118427482.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118458293.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641184741044.gif)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118490482.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823164118505293.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641185211049.gif)
综上所述:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231641180531131.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目