题目内容
已知
=(1,5,-2),
=(3,1,z),若
⊥
,则实数z的值为( )
AB |
BC |
AB |
BC |
A、5 | B、2 | C、3 | D、4 |
分析:根据
⊥
,则
•
=0,然后利用数量积的坐标关系建立等式,可求出z的值.
AB |
BC |
AB |
BC |
解答:解:∵
=(1,5,-2),
=(3,1,z),
⊥
,
∴
•
=0即1×3+5×1+(-2)×z=0,解得:z=4.
故选:D.
AB |
BC |
AB |
BC |
∴
AB |
BC |
故选:D.
点评:本题主要考查了空间两向量垂直的关系的判定,以及利用数量积的应用,同时考查了坐标关系,属于基础题.
练习册系列答案
相关题目