题目内容

设双曲线的中心在坐标原点,对称轴是坐标轴,F1、F2是左、右焦点,是双曲线上一点,且∠F1PF2=600S△PF1F2=12
3
,又离心率为2,求双曲线的方程.
不妨设点P在双曲线的右支上,
设双曲线的方程为
x2
a2
-
y2
b2
=1
,|PF1|=m,|PF2|=n则有
m-n=2a①
∠F1PF2=600
由余弦定理得
m2+n2-2mncos60°=4c2
S△PF1F2=12
3

1
2
mnsin60°=12
3

∵离心率为2
c
a
=2

解①②③④a=2,c=4
∴b2=c2-a2=12
双曲线的方程为
x2
4
-
y2
12
=1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网