题目内容
设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有恒成立,则不等式的解集是( )
A.(-2,0)∪(2,+∞) | B.(-2,0)∪(0,2) |
C.(-∞,-2)∪(2,+∞) | D.(-∞,-2)∪(0,2) |
D
所以f(x)/ x 在(0,+∞)内单调递减.
因为f(2)=0,
所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
所以答案为(-∞,-2)∪(0,2).
故选D
因为f(2)=0,
所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
所以答案为(-∞,-2)∪(0,2).
故选D
练习册系列答案
相关题目