题目内容

已知函数f(x)=
1+lnx
x

(1)若函数f(x)在区间(
a
2
,a+
1
2
)
上存在极值,其中a>0,求实数a的取值范围.
(2)设g(x)=xf(x)+bx-1+ln(2-x
)
(b>0)
,若g(x)在(0,1]上的最大值为
1
2
,求实数b的值.
(1)∵函数f(x)的定义域为{x|x>0},f′(x)=-
lnx
x2

f′(x)=-
lnx
x2
=0
,解得x=1,
当0<x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减,
∴f(x)在x=1处取极大值,
因为f(x)在区间(
a
2
,a+
1
2
)
上存在极值,所以
a
2
<1<a+
1
2
,解得
1
2
<a<2

所以实数a的取值范围是(
1
2
,2).
(2)g(x)=xf(x)+bx-1-ln(2-x)=bx+lnx-ln(2-x),
∵b>0,当x∈(0,1]时,g′(x)=b+
2
x(2-x)
>0,
所以g(x)在(0,1]上单调递增,
故g(x)在(0,1]上的最大值为g(1)=b,
因此b=
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网