ÌâÄ¿ÄÚÈÝ
¶ÔÓÚÊýÁÐ{An}£ºA1£¬A2£¬A3£¬¡£¬An£¬Èô²»¸Ä±äA1£¬½ö¸Ä±äA2£¬A3£¬¡£¬AnÖв¿·ÖÏîµÄ·ûºÅ£¬µÃµ½µÄÐÂÊýÁÐ{an}³ÆΪÊýÁÐ{An}µÄÒ»¸öÉú³ÉÊýÁУ®Èç½ö¸Ä±äÊýÁÐ1£¬2£¬3£¬4£¬5µÄµÚ¶þ¡¢ÈýÏîµÄ·ûºÅ¿ÉÒԵõ½Ò»¸öÉú³ÉÊýÁÐ1£¬-2£¬-3£¬4£¬5£®ÒÑÖªÊýÁÐ{an}ΪÊýÁÐ{
}(n¡ÊN*)µÄÉú³ÉÊýÁУ¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£®
£¨1£©Ð´³öS3µÄËùÓпÉÄÜÖµ£»
£¨2£©ÈôÉú³ÉÊýÁÐ{an}µÄͨÏʽΪan=
£¬k¡ÊN£¬ÇóSn£»
£¨3£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º¶ÔÓÚ¸ø¶¨µÄn¡ÊN*£¬SnµÄËùÓпÉÄÜÖµ×é³ÉµÄ¼¯ºÏΪ£º{x|x=
£¬m¡ÊN*£¬m¡Ü2n-1}£®
1 |
2n |
£¨1£©Ð´³öS3µÄËùÓпÉÄÜÖµ£»
£¨2£©ÈôÉú³ÉÊýÁÐ{an}µÄͨÏʽΪan=
|
£¨3£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º¶ÔÓÚ¸ø¶¨µÄn¡ÊN*£¬SnµÄËùÓпÉÄÜÖµ×é³ÉµÄ¼¯ºÏΪ£º{x|x=
2m-1 |
2n |
·ÖÎö£º£¨1£©ÒÀÌâÒ⣬¿ÉµÃa2=¡À
£¬a3=¡À
£¬´Ó¶ø¿ÉÇóµÃS3µÄËùÓпÉÄÜÖµ£»
£¨2£©ÀûÓÃan=
£¬k¡ÊN£¬·Ön=3k¡¢n=3k+1Óën=3k+2£¨k¡ÊN*£©ÌÖÂÛ£¬ÀûÓ÷Ö×éÇóºÍÓëµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉÇóµÃSn£»
£¨3£©ÀûÓÃÊýѧ¹éÄÉ·¨£¬¢Ùµ±n=1ʱ£¬Ò×Ö¤ÃüÌâ³ÉÁ¢£»¢Ú¼ÙÉèn=kʱÃüÌâ³ÉÁ¢£¬È¥Ö¤Ã÷n=k+1ʱÃüÌâÒ²³ÉÁ¢¼´¿É£®
1 |
4 |
1 |
8 |
£¨2£©ÀûÓÃan=
|
£¨3£©ÀûÓÃÊýѧ¹éÄÉ·¨£¬¢Ùµ±n=1ʱ£¬Ò×Ö¤ÃüÌâ³ÉÁ¢£»¢Ú¼ÙÉèn=kʱÃüÌâ³ÉÁ¢£¬È¥Ö¤Ã÷n=k+1ʱÃüÌâÒ²³ÉÁ¢¼´¿É£®
½â´ð£º£¨1£©ÓÉÒÑÖª£¬a1=
£¬|an|=
£¨n¡ÊN*£¬n¡Ý2£©£¬
¡àa2=¡À
£¬a3=¡À
£¬
ÓÉÓÚ
+
+
=
£¬
+
-
=
£¬
-
+
=
£¬
-
-
=
¡àS3¿ÉÄÜֵΪ
£¬
£¬
£¬
£®
£¨2£©¡ßan=
£¬k¡ÊN
¡àn=3k£¨k¡ÊN*£©Ê±£¬Sn=£¨
-
-
£©+£¨
-
-
£©+¡+£¨
-
-
£©
=£¨
+
+¡+
£©-£¨
+
+¡+
£©-£¨
+
+
£©
=
-
-
=
[1-(
)k]£¨
-
-
£©
=
[1-(
)n]£»
n=3k+1£¨k¡ÊN£©Ê±£¬Sn=Sn-1+an=
[1-(
)n]+
=
[1+5(
)n]£»
n=3k+2£¨k¡ÊN£©Ê±£¬Sn=Sn+1-an+1=
[1-(
)n+1]+
=
[1+3(
)n]£»
¡àSn=
(k¡ÊN)£®
£¨3£©¢Ùn=1ʱ£¬S1=
£¬ÃüÌâ³ÉÁ¢£®
¢Ú¼ÙÉèn=k£¨k¡Ý1£©Ê±ÃüÌâ³ÉÁ¢£¬¼´SkËùÓпÉÄÜÖµ¼¯ºÏΪ£º{x|x=
£¬m¡ÊN*£¬m¡Ü2k-1}
ÓɼÙÉ裬Sk=
£¨m¡ÊN*£¬m¡Ü2k-1£©£¬
Ôòµ±n=k+1£¬Sk+1=
¡À
¡À
¡À¡+
¡À
=Sk¡À
=
£¬
ÓÖSk+1=
=
£¨m¡ÊN*£¬m¡Ü2k-1£©£¬
¼´Sk+1=
»òSk+1=
£¨m¡ÊN*£¬m¡Ü2k-1£©
¼´Sk+1=
£¨m¡ÊN*£¬m¡Ü2k£©¡àn=k+1ʱ£¬ÃüÌâ³ÉÁ¢£®
ÓÉ¢Ù¢Ú£¬n¡ÊN*£¬SnËùÓпÉÄÜÖµ¼¯ºÏΪ{x|x=
£¬m¡ÊN*£¬m¡Ü2n-1}£®
1 |
2 |
1 |
2n |
¡àa2=¡À
1 |
4 |
1 |
8 |
ÓÉÓÚ
1 |
2 |
1 |
4 |
1 |
8 |
7 |
8 |
1 |
2 |
1 |
4 |
1 |
8 |
5 |
8 |
1 |
2 |
1 |
4 |
1 |
8 |
3 |
8 |
1 |
2 |
1 |
4 |
1 |
8 |
1 |
8 |
¡àS3¿ÉÄÜֵΪ
1 |
8 |
3 |
8 |
5 |
8 |
7 |
8 |
£¨2£©¡ßan=
|
¡àn=3k£¨k¡ÊN*£©Ê±£¬Sn=£¨
1 |
21 |
1 |
22 |
1 |
23 |
1 |
24 |
1 |
25 |
1 |
26 |
1 |
23k-2 |
1 |
23k-1 |
1 |
23k |
=£¨
1 |
21 |
1 |
24 |
1 |
23k-2 |
1 |
22 |
1 |
25 |
1 |
23k-1 |
1 |
23 |
1 |
26 |
1 |
23k |
=
| ||||
1-
|
| ||||
1-
|
| ||||
1-
|
=
8 |
7 |
1 |
8 |
1 |
2 |
1 |
4 |
1 |
8 |
=
1 |
7 |
1 |
2 |
n=3k+1£¨k¡ÊN£©Ê±£¬Sn=Sn-1+an=
1 |
7 |
1 |
2 |
1 |
2n |
1 |
7 |
1 |
2 |
n=3k+2£¨k¡ÊN£©Ê±£¬Sn=Sn+1-an+1=
1 |
7 |
1 |
2 |
1 |
2n+1 |
1 |
7 |
1 |
2 |
¡àSn=
|
£¨3£©¢Ùn=1ʱ£¬S1=
1 |
2 |
¢Ú¼ÙÉèn=k£¨k¡Ý1£©Ê±ÃüÌâ³ÉÁ¢£¬¼´SkËùÓпÉÄÜÖµ¼¯ºÏΪ£º{x|x=
2m-1 |
2k |
ÓɼÙÉ裬Sk=
2m-1 |
2k |
Ôòµ±n=k+1£¬Sk+1=
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2k |
1 |
2k+1 |
1 |
2k+1 |
2k+1Sk¡À1 |
2k+1 |
ÓÖSk+1=
2k+1Sk¡À1 |
2k+1 |
2(2m-1)¡À1 |
2k+1 |
¼´Sk+1=
2¡Á(2m-1)-1 |
2k+1 |
2¡Á(2m)-1 |
2k+1 |
¼´Sk+1=
2m-1 |
2k+1 |
ÓÉ¢Ù¢Ú£¬n¡ÊN*£¬SnËùÓпÉÄÜÖµ¼¯ºÏΪ{x|x=
2m-1 |
2n |
µãÆÀ£º±¾Ì⿼²éÊýѧ¹éÄÉ·¨£¬×ÅÖØ¿¼²é¶ÔÐÂÊýÁиÅÄîµÄÀí½â£¬¿¼²éÍÆÀí¡¢×ª»¯¡¢³éÏó˼άÓë´´ÐÂ˼άµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿