题目内容
某数表中的数按一定规律排列,如图表所示,从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…中的第8项a8=
50
50
.1 | 1 | 1 | 1 | 1 | 1 | … |
1 | 2 | 3 | 4 | 5 | 6 | … |
1 | 3 | 5 | 7 | 9 | 11 | … |
1 | 4 | 7 | 10 | 13 | 16 | … |
1 | 5 | 9 | 13 | 17 | 21 | … |
… | … | … | … | … | … | … |
分析:观察表中形成的数列,1,2,5,10,17,…,第二项比第一项大1,第三相比第二项大3,第四相比第三项大5,第五相比第四项大7,以此类推,后一项与前一项的差形成一个公差为2的等差数列,用叠加法求出结果.
解答:解:∵a2-a1=1,
a3-a2=3,
a4-a3=5,
…,
an-an-1=2(n-1)-1,
把上述各式相加,得到
an=1+3+5+7+…+(2n-3)+1
=
+1
=(n-1)2+1
=n2-2n+2,
当n=8时,第8项a8=50
故答案为:50.
a3-a2=3,
a4-a3=5,
…,
an-an-1=2(n-1)-1,
把上述各式相加,得到
an=1+3+5+7+…+(2n-3)+1
=
[1+(2n-3)](n-1) |
2 |
=(n-1)2+1
=n2-2n+2,
当n=8时,第8项a8=50
故答案为:50.
点评:在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.
练习册系列答案
相关题目
某数表中的数按一定规律排列,如图表所示,从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的通项公式an=________.
1 | 1 | 1 | 1 | 1 | 1 | … |
1 | 2 | 3 | 4 | 5 | 6 | … |
1 | 3 | 5 | 7 | 9 | 11 | … |
1 | 4 | 7 | 10 | 13 | 16 | … |
1 | 5 | 9 | 13 | 17 | 21 | … |
… | … | … | … | … | … | … |
某数表中的数按一定规律排列,如图表所示,从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…中的第8项a8= .
1 | 1 | 1 | 1 | 1 | 1 | … |
1 | 2 | 3 | 4 | 5 | 6 | … |
1 | 3 | 5 | 7 | 9 | 11 | … |
1 | 4 | 7 | 10 | 13 | 16 | … |
1 | 5 | 9 | 13 | 17 | 21 | … |
… | … | … | … | … | … | … |
某数表中的数按一定规律排列,如图表所示,从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的通项公式an= .
1 | 1 | 1 | 1 | 1 | 1 | … |
1 | 2 | 3 | 4 | 5 | 6 | … |
1 | 3 | 5 | 7 | 9 | 11 | … |
1 | 4 | 7 | 10 | 13 | 16 | … |
1 | 5 | 9 | 13 | 17 | 21 | … |
… | … | … | … | … | … | … |