题目内容
已知盒中有大小相同的3个红球和个白球,从盒中一次性取出3个球,取到白
球个数的期望为,若每次不放回的从盒中取一个球,一直到取出所有白球时停止抽取,
则停止抽取时恰好取到两个红球的概率为 ( )
球个数的期望为,若每次不放回的从盒中取一个球,一直到取出所有白球时停止抽取,
则停止抽取时恰好取到两个红球的概率为 ( )
A. | B. | C. | D. |
D
取到白球个数的期望为,取得红球个数的期望为(加起来是3),所以红球、白球比为3:2,所以白球有2个,一直到取出所有白球时停止抽取,恰好取到两个红球,则第四个抽取的一定是白球,可能的情况有:红红白白,红白红白,白红红白,则概率为:
练习册系列答案
相关题目