题目内容
(本题满分12分)已知过点且斜率为1的直线与直线
交于点.
(1)求以、为焦点且过点的椭圆的方程;
(2)设点是椭圆上除长轴两端点外的任意一点,试问在轴上是否存在两定点、使
得直线、的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点、
的坐标;若不存在,请说明理由.
解:(1)
根据椭圆定义,得
所以.又,所以.
所以椭圆的方程为. …………………(4分)
(2)假设存在两定点为,使得对于椭圆上任意一点
(除长轴两端点)都有(为定值),即·,
将代入并整理得…(*).
由题意,(*)式对任意恒成立,所以,
解之得 或.
所以有且只有两定点,使得为定值………(12分)
练习册系列答案
相关题目