题目内容

矩形ABCD中,轴,且矩形ABCD恰好能完全覆盖函数的一个完整周期图象,则当变化时,矩形ABCD周长的最小值为       .

解析试题分析:由题意得到矩形ABCD长为  函数y=asinax(a∈R,a≠0)的最小正周期| |,宽为|2a|,利用基本不等式,求出周长的最小值.解:由题意得,矩形ABCD长为  函数y=asinax(a∈R,a≠0)的一个完整周期||,宽为|2a|,故此矩形的周长为 2•||+2•|2a|=+4|a|≥=8,故答案为:8
考点:基本不等式
点评:本题考查函数y=asinax(a∈R,a≠0)的最小正周期,基本不等式的应用,求出举行的长是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网