题目内容
设m,n是两条不同的直线,α,β是两个不同的平面( )
A.若m⊥n,n∥α,则m⊥α
B.若m∥β,β⊥α则m⊥α
C.若m⊥β,n⊥β,n⊥α则m⊥α
D.若m⊥n,n⊥β,β⊥α,则m⊥α
若“,使得成立”是假命题,则实数的取值范围为( )
A. B. C. D.
函数与在同一坐标系中的图像只可能是
某几何体的三视图如图所示,则该几何体的体积等于_______
下图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )
设,.
(Ⅰ)当时,求曲线在处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.
圆锥的轴截面是边长为4的正三角形(为顶点),为底面中心,为中点,动点在圆锥底面内(包括圆周),若AM⊥MP,则点形成的轨迹长度为( )
A. B. C. D.
设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cos C=.
(Ⅰ)求△ABC的周长; (Ⅱ)求cos A的值.
某地自来水苯超标,当地自来水公司对水质检测后,决定在水中投放一种药剂来净化水质,已知每投放质量为的药剂后,经过天该药剂在水中释放的浓度(毫克/升)满足,其中,当药剂在水中的浓度不低于5(毫克/升)时称为有效净化;当药剂在水中的浓度不低于5(毫克/升)且不高于10(毫克/升)时称为最佳净化.
(Ⅰ)如果投放的药剂质量为,试问自来水达到有效净化一共可持续几天?
(Ⅱ)如果投放的药剂质量为,为了使在9天(从投放药剂算起包括9天)之内的自来水达到最佳净化,试确定应该投放的药剂质量的最小值.