题目内容

【题目】已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|2x﹣3|+2. (Ⅰ)解不等式|g(x)|<5;
(Ⅱ)若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围

【答案】解:(Ⅰ)由|2x﹣3|+2<5,得:|2x﹣3|<3, 故﹣3<2x﹣3<3,解得:0<x<3;
(Ⅱ)由题意知{y|y=f(x)}{y|y=g(x)}
又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,
g(x)=|2x﹣3|+2≥2,
所以|a+3|≥2a≥﹣1或a≤﹣5
【解析】(Ⅰ)去掉绝对值,求出不等式的解集即可;(Ⅱ)问题转化为{y|y=f(x)}{y|y=g(x)},分别求出f(x)和g(x)的最小值,求出a的范围即可.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网