题目内容

下列说法中:

① 若(其中)是偶函数,则实数

既是奇函数又是偶函数;

③ 函数的减区间是

④ 已知是定义在上的不恒为零的函数,且对任意的都满足

,则是奇函数。

其中正确说法的序号是(    )

A.①②④                               B.①③④

C.②③④                               D.①②③

 

【答案】

A

【解析】

试题分析:① 若(其中)是偶函数,则,所以实数

的定义域为{-2013,2013},所以=0,所以既是奇函数又是偶函数;

③ 函数的减区间是

④令 ,则;令,则

,所以

,则,所以是奇函数。

考点:函数的奇偶性;复合函数的单调性;抽象函数的有关问题。

点评:此题考查的知识点较多,较为综合,属于中档题。①切记:偶函数的定义域一定关于原点对称。②判断函数的奇偶性,可以根据定义域先化简。③求函数的单调区间时,一定要先求函数的定义域。④有关抽象函数的问题,常用赋值法。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网