题目内容

2.设y=x2-2x,x∈[-2,a],求函数的最小值g(a)

分析 由于函数y=x2-2x 的对称轴为直线x=1,故当-2<a≤1时,函数在[-2,a]上是减函数,故最小值为g(a)=a2-2a.当a>1时,函数在[-2,1]上是减函数,在[1,a]上是增函数,故最小值为g(1)=-1,从而求得g(a)的解析式.

解答 解:由于函数y=x2-2x=(x-1)2-1 的对称轴为x=1,
当x∈[-2,a]时,函数的最小值为g(a),
∴当-2<a≤1时,函数在[-2,a]上是减函数,
故最小值为g(a)=a2-2a.
当a>1时,函数在[-2,1]上是减函数,在[1,a]上是增函数,
故最小值为g(1)=-1.
综上可得,g(a)=$\left\{\begin{array}{l}{a}^{2}-2a,a∈(-2,1]\\-1,a∈(1,+∞)\end{array}\right.$.

点评 本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网