题目内容

已知直线,抛物线上有一动点P到直线的距离之和的最小值是(  )

A. B. C.3 D.2

D

解析试题分析:设出抛物线上一点P的坐标,然后利用点到直线的距离公式分别求出P到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方法即可求出距离之和的最小值.解:设抛物线上的一点P的坐标为(a2,2a),则P到直线l2:x=-1的距离d2=a2+1; P到直线l1:4x-3y+6=0的距离d1=则d1+d2=当a= 时,P到直线l1和直线l2的距离之和的最小值为2
故答案为2
考点:抛物线的简单性质
点评:此题考查学生灵活运用抛物线的简单性质解决实际问题,灵活运用点到直线的距离公式化简求值,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网