题目内容
(2012•眉山二模)已知f(x)=ax3+bx2+cx+d是定义在R上的函数,它在[-1,0]和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.
(Ⅰ)求c的值;
(Ⅱ)在函数f(x)的图象上是否存在点M(x0,y0),使得f(x)在点M的切线斜率为3b?若存在,求出M点的坐标,若不存在,则说明理由;
(Ⅲ)设f(x)的图象交x轴于A、B、C三点,且B的坐标为(2,0),求线段AC的长度|AC|的取值范围.
(Ⅰ)求c的值;
(Ⅱ)在函数f(x)的图象上是否存在点M(x0,y0),使得f(x)在点M的切线斜率为3b?若存在,求出M点的坐标,若不存在,则说明理由;
(Ⅲ)设f(x)的图象交x轴于A、B、C三点,且B的坐标为(2,0),求线段AC的长度|AC|的取值范围.
分析:(1)利用函数f(x)的单调区间判断出x=0是函数的极值点,利用函数在极值点处的导数值为0,列出方程求出c的值.
(2)将c的值代入导函数,令导函数为0求出方程的两个根即两个极值点,据函数的单调性,判断出根 -
与区间端点的关系,列出不等式组求出
的范围.假设存在,根据导数的几何意义,列出方程,通过判断判别式的符号得到结论.
(3)设出f(x)的三个零点,写出f(x)的利用三个根不是的解析式,将x=2代入,利用韦达定理求出A,C的距离,据(2)求出|AC|的最值.
(2)将c的值代入导函数,令导函数为0求出方程的两个根即两个极值点,据函数的单调性,判断出根 -
2b |
3a |
b |
a |
(3)设出f(x)的三个零点,写出f(x)的利用三个根不是的解析式,将x=2代入,利用韦达定理求出A,C的距离,据(2)求出|AC|的最值.
解答:解:(1)由条件可知f(x)在区间[-1,0]和[0,2]上有相反的单调性,
∴x=0是f(x)的一个极值点,
∴f′(0)=0
而f′(x)=3ax2+2bx+c,
故c=0.
(2)令f′(x)=0,则3ax2+2bx=0,
解得 x1=0,x2=-
.
又f(x)在区间[0,2]和[4,5]上有相反的单调性,
得
解得 -6≤
≤-3.
假设存在点M(x0,y0),使得f(x)在点M处的切线斜率为3b,则f'(x0)=3b 即3a
+2bx0-3b=0所以△=4ab(
+9)
∵-6≤
≤-3∴ab<0,
+9>0,∴△<0,x0无解
故不存在点M(x0,y0),使得f(x)在点M处的切线斜率为3b
(3)设A(α,0),C(β,0),
则由题意可令f(x)=a(x-α)(x-2)(x-β)=a[x3-(2+α+β)x2+(2α+2β+αβ)x-2αβ]…(2分)
则
,解得
又∵函数f(x)的图象交x轴于B(2,0),
∴f(2)=0即8a+4b+d=0
∴d=-4(b+2a),
αβ=4+
从而 |AC|=|α-β|=
=
∵-6≤
≤-3
∴当
=-6时,|AC|max=4
;当
=-3时,|AC|min=3.
所以3≤|AC|≤4
∴x=0是f(x)的一个极值点,
∴f′(0)=0
而f′(x)=3ax2+2bx+c,
故c=0.
(2)令f′(x)=0,则3ax2+2bx=0,
解得 x1=0,x2=-
2b |
3a |
又f(x)在区间[0,2]和[4,5]上有相反的单调性,
得
|
b |
a |
假设存在点M(x0,y0),使得f(x)在点M处的切线斜率为3b,则f'(x0)=3b 即3a
x | 2 0 |
b |
a |
∵-6≤
b |
a |
b |
a |
故不存在点M(x0,y0),使得f(x)在点M处的切线斜率为3b
(3)设A(α,0),C(β,0),
则由题意可令f(x)=a(x-α)(x-2)(x-β)=a[x3-(2+α+β)x2+(2α+2β+αβ)x-2αβ]…(2分)
则
|
|
又∵函数f(x)的图象交x轴于B(2,0),
∴f(2)=0即8a+4b+d=0
∴d=-4(b+2a),
αβ=4+
2b |
a |
从而 |AC|=|α-β|=
(α+β)2-4αβ |
(
|
∵-6≤
b |
a |
∴当
b |
a |
3 |
b |
a |
所以3≤|AC|≤4
3 |
点评:本题考查极值点处的函数值为0,极值点左右两边的导函数符号相反;解决二次方程的根的问题常用到韦达定理.
练习册系列答案
相关题目